必要的数学知识
Summary: 本文总结了个人觉得应该知道的数学内容.
Fourier 变换
基本知识和记号
定义域有限 $\implies$ 周期性.
原胞默认 Wigner-Seitz 原胞.
不写积分域的默认全空间 $ \mathbb{R}^d $ 积分.
三角函数形式不再给出, 如有需要通过 Euler 公式 $ e^{i\theta} = \cos \theta + i \sin \theta $ 自行推导.
实空间和倒空间一方的离散将导致另一方的周期性, 反之亦然. (离散间隔 $ \Leftrightarrow $ 周期)
正交归一性由指数函数给出:
$$\begin{aligned} & \int_{1Bz} \frac{\dd[d]{k}}{\Omega} e^{ik\cdot(R_l-R_{l^\prime})} = \delta_{l,l^\prime} ,\\ & \int \frac{\dd[d]{k}}{(2\pi)^d} e^{ik\cdot (x-x^\prime)} = \delta(x-x^\prime). \end{aligned}$$任意维度的倒格矢: $ (b_i)_j = 2\pi \qty(A^{-1})_{ji} $. 其中, $ a_i $ 为原胞基矢, $ A_{ij} \equiv (a_i)_j $.
实空间原胞的体积为 $ V = \abs{\det A} $, 倒空间原胞 (1st Brillouin Zone) 的体积为: $ \Omega = (2\pi)^d / \abs{\det A} $.
Fourier 的一般形式 (1 dimensional 为例)1:
$$\left\{\begin{aligned} F(k) &= \sqrt{(2\pi)^{a-1}\abs{b}} \int_{\mathbb{R}} \dd{x} f(x) \exp(i b k x),\\ f(x) &= \sqrt{(2\pi)^{-a-1}\abs{b}} \int_{\mathbb{R}} \dd{k} F(k) \exp(-i b k x). \end{aligned}\right.$$- My Preferences ($ a=1,b=\pm 1 $): $\begin{aligned} F(k)=\int \dd{x} f(x) e^{-ikx} \quad \text{or} \quad F(\omega)=\int \dd{t} f(t) e^{i \omega t}. \end{aligned}$
- Engineering (maybe $ a=0 , b=-2\pi $): $ F(\nu) = \int \dd{t} f(t) e^{-i 2\pi \nu t}, \quad f(t) = \int \dd{\nu} F(\nu) e^{i 2\pi \nu t}. $
实, 倒空间取值都连续: Fourier 变换
$$ \left\{ \begin{aligned} & f(x) = \int \frac{\dd[d]{k}}{(2\pi)^d} F(k) \exp(i k \cdot x) ,\\ & F(k) = \int \dd[d]{x} f(x) \exp(-i k \cdot x). \end{aligned} \right. \Leftrightarrow \left\{ \begin{aligned} & f(x) = \int \frac{\dd[d]{k}}{\Omega} F(k) \exp(i k \cdot x) ,\\ & F(k) = \int \frac{\dd[d]{x}}{V} f(x) \exp(-i k \cdot x). \end{aligned} \right. $$实, 倒空间取值一个离散一个连续: Fourier 级数
$$\left\{\begin{aligned} & f(x) = \sum_{h \in \mathbb{Z}^d}\frac{\Omega}{(2\pi)^d} F(k \equiv G_h) \exp(i G_h \cdot x) = f(x+R_l),\\ & F(k \equiv G_h) = \int_{V} \dd[d]{x} f(x) \exp(-i G_h \cdot x). \end{aligned}\right.$$$$\left\{\begin{aligned} & f(x \equiv R_l) = \int_{\Omega} \frac{\dd[d]{k}}{(2\pi)^d} F(k) \exp(i k \cdot R_l),\\ & F(k) = \sum_{l \in \mathbb{Z}^d} V f(x \equiv R_l) \exp(-i k \cdot R_l) = F(k+G_h). \end{aligned}\right.$$实, 倒空间取值都离散: Discrete Fourier Transform (DFT)
$Z_N=\qty{ n \mod N | n \in \mathbb{Z} }$ 是循环群, $ Z \equiv Z_{N_1}\bigotimes \cdots \bigotimes Z_{N_d} = \qty{n| n_i = h_i \;\text{mod}\; N_i , \forall h \in \mathbb{Z}^d, i=1,\cdots ,d } $.
$$ \begin{aligned} & f(x \equiv R_l) = \sum_{h \in Z } F(G_h) \exp( 2\pi i \sum_{j=1}^{d} h_j l_j/N_j),\\ & F(k \equiv K_h) = \frac{1}{N_1 \cdots N_d} \sum_{l \in Z } f(R_l) \exp(-2\pi i \sum_{j=1}^{d} h_j l_j/N_j). \end{aligned} $$Some Examples
Dirac Delta 函数
$$ \delta(x) = \int \frac{\dd[d]{k}}{(2\pi)^d} \; 1 \; e^{i k \cdot x} $$Heaviside Step 函数
$$ H(x) = \int \frac{\dd{k}}{2\pi} \; \qty\Big( \pi \delta(k) + \PV{\frac{1}{ik}} ) \; e^{i k x} $$Dirac 梳
$$ f(x) = \sum_{l \in \mathbb{Z}^d} \delta \qty(x-R_l) = \sum_{h \in \mathbb{Z}^d} \frac{1}{V} e^{i G_h \cdot x} $$Dirac Delta 函数 和 Heaviside Step 函数
$ \delta(a x) = \delta(x)/\abs{a} $.
$ \int \dd{x} f(x) \; \delta^{(m)}(x-a) = (-1)^m f^{(m)}(a) $.
若 $ \phi(x)=0 $ 的实根 $ x_k $ 全是 单根, 则
$$ \delta\qty(\phi(x)) = \sum_{k} \frac{\delta(x-x_k)}{\abs{\phi^\prime(x_k)}} $$$ \nabla^2(1/r) = -4\pi \delta(r) $.
$ \ln x= \ln \abs{x} + i \pi H(-x) \implies (\ln x)^\prime = 1/x - i\pi \delta(x) \qc{\forall x \in \mathbb{R}/\qty{0}}. $ $ \abs{x} = x \qty(H(x) - H(-x)) \implies (\abs{x})^\prime = H(x) - H(-x).$
矩阵
行列式 与 迹
$$ \det \exp A = \exp \tr A \; \Leftrightarrow \; \ln \det A = \tr \ln A. $$分解
奇异值分解
奇异值分解. TODO…
极分解
极分解 , 旨在将矩阵像复数那样分解成 模 和 相因子 之积的形式: $ z = r \exp(i\theta) $.
$\forall $ 可逆的 $ A \in \mathbb{C}^{n\times n}, \exists !$ 幺正的 $ \exp(i\Theta )$ and 厄米的 半正定的 $ R \in \mathbb{C}^{n\times n} $ s.t.
$$ A = R \exp(i\Theta). $$其中, $ R = \sqrt{A^\dagger A} $, $ \exp(i\Theta) = R^{-1}A $.
Pauli 矩阵
基础
定义
\[ \sigma_1 = \mqty(& 1\\1 &), \sigma_2 = \mqty(& -i\\i &), \sigma_3 = \mqty(1 &\\ & -1). \]厄米性
\[ \sigma_i = \sigma_i^\dagger. \]对易/反对易关系
\[ \begin{aligned} &\comm{\sigma_i}{\sigma_j} = 2i\, \epsilon^k{}_{ij}\, \sigma_k,\\ &\acomm{\sigma_i}{\sigma_j} = 2\, \delta_{ij}\, 1_2. \end{aligned} \]推论\[ \sigma_i \sigma_j = \delta_{ij} 1_2 + i \epsilon^k{}_{ij}\,\sigma_k \]\[ \sigma_i = \sigma_i^\dagger = \sigma_i^{-1} \]
推论
$$ (\va{a} \cdot \va{\sigma})(\va{b} \cdot \va{\sigma}) = \va{a}\cdot\va{b}\; 1_2 + \va{a}\times\va{b}\cdot\va{\sigma}. $$$$ \exp(i\theta A) = \cos \theta \; 1_m + i \sin \theta A \qc{\forall A \in \mathbb{C}^{m\times m}, A^2 = 1_m}. $$其他
多元函数 Taylor 展开
$$ f^\mu(x)=\exp(x^\nu \partial_\nu|_0) \; f^\mu. $$Gauss 积分
对于正定的$ A \in \mathbb{R}^{d\times d} $, 有
$$ \int_{\mathbb{R}^d} \dd[d]{x} \exp(-\frac{1}{2} x^T A x + B^T x + C) = \qty(\frac{(2\pi)^d}{\det A})^{1/2} \exp(\frac{1}{2} B^T A^{-1} B + C). $$其中, 由于只有 $ A $ 的对称部分才会对积分结果有影响, 故不妨令 $ A_{\mu\nu} \rightarrow A_{(\mu\nu)} \equiv [(A+A^T)/2]_{\mu\nu} $.
References
- $ \det(\exp(A)) = \exp(\tr(A)) $ 的证明可以参考 苏剑林’s Blog.
TODO
- 这里 DFT 有没有更好的写法?
Ref: Mathematica. ↩︎